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Abstract—In this paper, we introduce an egocentric dataset
recorded from a robot’s point of view (robocentric), which has
been created to serve as a platform for indoor crowd analysis.
The dataset features over 100,000 RGB, depth, and wide-angle
camera images as well as LIDAR readings, recorded during a
social gathering where the robot captured group interactions
between participants using its on-board sensors. We evaluated
three different human detection algorithms on our dataset to
demonstrate the challenges of indoor crowd analysis from a
robot’s perspective.

Index Terms—Indoor crowd analysis; Multisensory egocentric
dataset; Group recognition

I. INTRODUCTION

Crowd analysis can enable robots to navigate in indoor spaces,
approach groups or individuals, and through human-robot
interaction assist them in their tasks or in achieving their
goals. The research conducted during the past decade on crowd
analysis and group detection shows promising results as it
utilises the concept of F-formations [1] in order to determine
interaction spaces. Most approaches have relied on head and/or
body posture detection to build models [2], based on top-down
or a bird-eye viewpoint images.

As highlighted by Taylor and Riek [3], these techniques
do not keep a robotic context in mind, as they often do not
consider the unpredictability of human spaces. Moreover, they
do not deal with the different types of noise introduced by the
robot’s sensors and movement [4], nor do they approach the
problem from a robot’s point-of-view, which makes them less
accurate when applied to an egocentric view.

As shown in Fig. 1, to address the aforementioned gaps, we
collected a novel Robocentric Indoor Crowd Analysis (RICA)
Dataset 1 using Toyota’s Human Support Robot (HSR) [5]
as a robotic platform. In particular, we recorded a crowded,
semi-public indoor event using robot’s on-board cameras as
well as LIDAR sensor. In comparison to the existing datasets
such as the JackRabbot Dataset [6], the RICA dataset was
acquired with less high-end sensors, and we annotated it to
enable human detection and group recognition. In this paper,
we discuss the challenges of crowd analysis from a robot’s
perspective and compared three benchmark human detection
methods on our dataset.

We thank Toyota Motor Europe for providing the Toyota HSR robot as a
development platform.

1The dataset will be made available at https://sairlab.github.io/rica/.
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Fig. 1. RGB-D (a1, b1) and Wide-angle camera (a2, b2) samples from two
different timestamps of the RICA dataset.

TABLE I
SUMMARY OF THE COLLECTED DATA USING ROBOT’S ON-BOARD
SENSORS COMPARED TO THE RELEVANT RECORDINGS OF JRDB.

Sensor Type Num. of Samples Average Framerate
RICA JRDB RICA JRDB

RGB camera 43,060 57,713 10.542 15.116
Depth camera 39,909 57,714 9.771 15.116
Wide-angle camera 17,877 58,313 4.377 15.273
Joint position 63,569 38,476 15.563 10.078
IMU 127,324 74,234 31.172 19.443
LIDAR 50,926 56,844 12.468 14.888

II. ROBOCENTRIC INDOOR CROWD ANALYSIS DATASET

The proposed dataset was recorded during a reception-style
semi-public event in an indoor environment with Toyota’s
Human Support Robot (HSR) [5]. The robot recorded the event
with an “ASUS Xtion PRO LIVE” – RGB-D – camera, a wide
angle camera (Nippon Chemi-Con NCM13-J-02), and a “Laser
measuring range sensor (UST-20LX)” – LIDAR – sensor. The
dataset contains over an hour-long recording of 50 people
conversing at a departmental party. Attendees were provided
written informed consent, and the data collection protocol was
approved by the Ethical Committee of King’s College London,
United Kingdom. Moreover, for privacy-preserving reasons,
the face of the attendees was blurred and only distance and
image data was collected.

To obtain a diverse dataset, the robot was driven around
at different speeds, following varying paths. Using the height
and head adjustment of the robot, its cameras were raised
to different elevations, and its head was set to record at
a variety of tilt and roll angles. Examples of the camera’s
captured images can be seen in Fig. 1, where the image data
was captured at a resolution of 640 × 480. We also recorded
IMU measurements of the robot and the joint positions of its
head while moving, which can be used to find correspondence
between image modalities and LIDAR readings (963 samples
from −2.098 to 2.098 radians per sample). The number of
samples and average rate per modality are given in Table I.
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Fig. 2. An annotated image recorded with the RGB camera, showing a person
(ID 21 – blue bounding box on the right hand side) not belonging to any
group, and two individuals (IDs 19-20 – red bounding boxes in the middle)
belonging to group ID 57 (green bounding box in the middle), where the
group formation of group ID 57 is annotated as face-to-face.

We labelled the dataset by using a modified version of
the Actanno annotation tool [7]. All RGB images of the
dataset have been labelled at a group-level, plus identifying the
group formations (i.e. L-arrangement, face-to-face, side-by-
side, semi-circular, and rectangular) [8]. In addition, person-
level labelling, marking people and assigning them to the iden-
tified groups, has been done for a total of 8, 148 RGB images.
These person-level annotations show that in each frame there
are 1 to 8 people with an average of 3.92 individuals per
frame. The annotations of the remaining modalities can be
automatically derived from the labelled bounding boxes based
on the timestamps and the joint positions. A sample annotated
image can be seen in Fig. 2.

A. Challenges

The RICA dataset was collected without providing participants
a script, therefore capturing the natural behaviour of attendees
when a mobile support robot was navigating the event floor.
The robot was driven at different speeds, on randomised paths,
while its cameras were raised to different elevations and its
head was held in different angles as it observed the interaction
groups. Our manual inspection of the data shows that this
resulted in high variation in the camera-to-subject distance
(0.1-25m), and participants were often occluded by static
objects or each other. It was not ensured that all participants
of a single group were in the field of view of the robot and
the observation length of each group was varied. The height
variation introduces colour changes in the observations of
the RGB-D and Wide-angle camera’s images. Due to these
factors, the recognition of individuals, groups, and group types
from the robot’s viewpoint is a challenging task, and datasets
dedicated to robocentric settings are crucial to advancing the
state-of-the-art.

III. EVALUATION

We define a series of tests to evaluate the performance of
state of the art human detection algorithms on the collected
dataset. In particular, we test three methods on the RICA
dataset, without fine-tuning: (1) Histogram of Oriented Gra-
dients (HOG) [9] combined with non-maxima suppression

(a) (b)

(c)

Fig. 3. Histograms of IOU values for between GT and (a) HOG; (b) SSD; and
(c) YOLO. The red vertical lines show the minimum IOU and overlap scores
to consider a bounding box as a True Positive detection. Green vertical lines
indicate the IOU and overlap scores above which the detection is considered
as successful.

(NMS); (2) MobileNet-SSD (SSD) [10] – trained on MS-
COCO [11], and then fine-tuned on VOC0712 [12] – with
centroid tracking, and (3) YOLO [13] – trained on MS-COCO
[11]. After retrieving the bounding boxes with each of the hu-
man detection methods from the person-level annotated RGB
images of the RICA dataset, we computed their intersection
over union (IOU) values against ground truth (GT).

Even though there is minimum a single person in each
frame, the HOG+NMS detector failed to detect any humans
in over 11% of the images, whereas the MN-SSD and YOLO
exhibited a similar, better performance – not detecting any
humans in 0.7% of all frames. The results of the IOU
comparisons are given in Fig. 3. The best mean IOU score
(µ = 0.64) was obtained with the SSD detector.

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel robocentric dataset for
indoor crowd analysis, called RICA. Our preliminary analysis
shows that the state-of-the-art human detectors fall short and
sometimes are unable to detect any humans in the scene due
to a list of challenges as summarised in Section II-A. As
future work, we will investigate how we can improve human
detection and tracking, e.g. by employing occlusion handling
techniques in tracking [14]. Moreover, we aim to design an
unsupervised approach to group detection in indoor crowded
scenes – by adding modalities other than RGB image inputs,
and utilising F-formations – based on the RICA dataset.
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